2.4 Entity-Relationship Model) 81

2.4.3

The composite attribute (p;, p2, . . . , pi) forms the primary key of the relationship
R. An instance of the relationship R is represented by concatenating -its attributes
(ry, ra» . . ., Iy) with the primary keys of the instances of the entities involved in
the relationship. Figure 2.27 represents such a relationship.

Representation of Entities

Figure 2.24

Consider an application such as a hotel and its restaurants. Here we use a simplified
version of the strong entity set EMPLOYEE with the following attributes: Empl_No,
Name, Skill. The primary key for this entity is Empl_No.

The entity set EMPLOYEE can be described as follows:

entity set EMPLOYEE
Empl_No: numeric; (* primary key*)
Name: string;
Skill: string;

We represent the entity set EMPLOYEE by a table that can, for the sake of
simplicity, be named EMPLOYEE. This table contains a column for each of its
attributes and a row for each instance of the entity. We add a new instance of the
entity EMPLOYEE by adding a row to this table. We also delete or modify rows to-
reflect changes that occur when employees leave or upgrade their skills. Figure 2.24
depicts an EMPLOYEE table. (We assume that each employee has but one skill.)

The weak entity DEPENDENTS, having as before the attributes Depend-
ent_Name and Kinship_to_Employee, is dependent on the strong entity EM-
PLOYEE. We represent the weak entity by the table DEPENDENTS, which contains
a column for the primary key of the strong entity EMPLOYEE. Thc DEPENDENTS
table in Figure 2.25 includes instances o the weak entities (Rick, spouse) and
(Chloe, daughter), which are dependent on EMPLOYEE 123459.

In general, to represent a weak entity such as W with the attributes wy, w,, ws,

., w, such that the weak entity is dependent on strong entity S with the primary
key 5y, S, . - . , Sp, We use a table with a column for each of the above attributes.

The EMPLOYEE table.

EMPLOYEE

Empl_No Name Skill

123456 Ron waiter
123457 - Jon bartender
123458 Don busboy
123459 Pam hostess
123460 Pat beliboy

123461 Ian maitre d’

Chapter 2 Data Models

Figure 2.28

The DEPENDENTS table.

2.4.4

DEPENDENTS

Empl_No Name Kinship_to_Employee

123459 Rick spouse
123459 Chloe daughter
123458 Cathy spouse

Representation of Reiationship Set

Figure 2.26

The entity-relationship diagrams are useful in representing the relationships among
entities. They show the logical model of the database. In Figure 2.26, an E-R dia-
gram shows the relationship between the entity sets EMPLOYEE and POSITION.
The relationship set is called DUTY_ALLOCATION and its attributes are Date and
Shift.

A relationship set involving entity sets E, E,, . . . , E, can be represented via
a record containing the primary key of each of the entities E; and the attrioutes of
the relationship. Where the relationship has no attributes, only the primary keys of
the entity involved are used to represent the relationship set.

Data for an E-R relationship could be represented by a number of tables. Each
of the entities involved in the relationship is represented by a table, as is the relation-
ship among these entities. The relationship DUTY_ALLOCATION between the enti-
ties EMPLOYEE and POSITION, shown in Figure 2.26, is represented by three
tables displayed in Figure 2.27.

The table EMPLOYEE contains data about the entities representing the hotel
employees. POSITION contains data on the duties to be performed by the hotel’s
employees in the restaurants run by the hotel. A relationship set is also represented
by a table. DUTY_ALLOCATION is represented by the table DUTY_ALLOCA-
TION, which contains the primary keys of the entities EMPLOYEE and POSITION
along with the attributes of the relationship Date and Shift.

E-R diagram showing DUTY_ALLOCATION relationship between entity sets EM-
PLOYEE and POSITION.

POSITION

2.4 Entity-Relationship Model 83

Figure 2.27 Representation of a relauonship.

EMPLOYEE POSITION
Empl_No Name A Skill Posting_No Skill
~123456 Ron waiter — 321 waiter
123457 Jon bartender 322 bartender
123458 Don * busboy 323 " busboy
123459 Pam hostess 324 hostess
123460 Pat beliboy 325 maitre d’
123461 lan waiter 326 waiter

DUTY-ALLOCATION

Posting_No Empl_No Date Saift

321 L 123456 19/04/86 |

323 123458 19/04/86 1 o MANGALORE
321 123461 20/04/86 2 575 001.

2.4.5 Generalization and Aggregation

Abstraction is the simplification mechanism used to hide superfluous details of a set
of objects, it allows one to concentrate on the properties that are of interest to the
application. As such, car is an abstraction of a personal transportation vehicle but
does not reveal details about model, year, color, and so on. Vehicle itself is an
abstraction that includes the types car, truck, and bus.

There are two main abstraction mechanisms used to model information: gener-
alization and aggregation. Generalization is the abstracting process of viewing sets
of objects a> a single general class by concentrating on the general characteristics of
the constituent sets while suppressing or ignoring their differences. It is the union of
a number of lower-level entity types for the purpose of producing a higher-level
entity type. For instance, student is a generalization of graduate or undergraduate,
full-time or part-time students. Similarly, employee is a generalization of the classes
of objects cook, waiter, cashier, maitre d’. Generalization is an IS_A relationship;
therefore, manager IS_An employee, cook IS_An employee, waiter IS_An employee,
and so forth. Specialization is the abstracting process of introducing new character-
istics to an existing class of objects to create one or more new classes of objects.
This involves taking a higher-level entity and, using additional characteristics, gen-
erating lower-level entities. The lower-level entities also inherit the characteristics of
the higher-level entity. In applying the characteristic size to car we can create a full-
size, mid-size, compact, or subcompact car. Specialization may be seen as the re-
verse process of generalization: additional specific properties are introduced at a
lower level in a hierarchy of objects. Both processes are illustrated in Figure 2.28
wherein the lower levels of the hierarchy are disjoint.

-

A

36 Chapter 2 Data Models

Aggregation is the process of compiling information on an object, thereby ab-
stracting a higher-level object. In this manner, the entity person is derived by aggre-
gating the characteristics name, address, and Social Security number. Another form
of aggregation is abstracting a relationship between objects and viewing the relation-
ship as an object. As such, the ENROLLMENT relationship between entities student
and course could be viewed as entity REGISTRATION. Examples of aggregations
are shown in Figure 2.31.

Consider the temnary relationship COMPUTING of Figure 2.23. Here we have a
relationship among the entities STUDENT, COURSE, and COMPUTING SYSTEM.

Figure 2.31 Examples of aggregation.

aggregation

(S SN)

REGISTRATION

(b)

(Wa_iter#}

(s | vt

2.5 A Comparative Example 57

A student registered in a given course uses one of several computing systems to
complete assignments and projects. The relationship between the entities STUDENT
and COURSE could be the aggregated entity REGISTRATION (Figure 2.31b), as
discussed above. In this case, we could view the ternary relationship of Figure 2.23
as one between registration and the entity computing system. Another method of
aggregating is to consider a relationship consisting of the entity COMPUTING SYS-
TEMs being assigned to COURSEs. This relationship can be aggregated as a new
entity and a relationship established between. it and STUDENT. Note that the differ-
ence between a relationship involving an aggregation and one with the three entities
lies in the number of relationships. In the former case we have two relationships; in
the latter, only one exists. The approach to be taken depends on what we want to
express. We would use the ternary relationship to express the fact that a STUDENT
or COURSE cannot be independently related to a COMPUTING SYSTEM.

Let us investigate the relationship among the entities WAITER, TABLE, and
GUEST shown in Figure 2.31c. These entities are of concem to a restaurant. There
is a relationship, SERVE, among these entities; i.e., a waiter is assigned to serve
guests at a given table. The waiters could be assigned unique identifiers. For exam-
ple, a waiter is an employee and the employee number uniquely identifies an em-
ployee and hence a waiter. A table could be assigned a number; however, this may
be more informal, since on occasion two or more tables are put together to accom-
modate a group of guests. The guests, even though identifiable by their features and
other unique identifiers such as Social_Security_Number or driver’s license number,
are not distinguishable for this application. Thus the SERVE relationship can best be
handled by an aggregation. The aggregation can be called a BILL (Figure 2.31c), .
and requires an introduction of an unique bill number for identification. In addition,
the following attributes from the SERVE relationship and the entities involved in the
relationship can be used for the aggregated entity: unique bill number, waiter id
fier, table identifier, date, number of guests in party, total, tip.

A Comparative Example

In this section we describe a small database modeling problem and provide a
model for it. We give its implementation in each of the other three modeling schemes
in Sections 2.6, 2.7, and 2.8.

Consider a database for the Universal Hockey League (UHL), a professional ice
hockey league with teams worldwide. It consists of a number of divisions and nu-
merous franchises under each division. The database records statistics on teams,
players, and divisions of the league.

A franchise may relocate to another city and may become part of a different
division. Players are under contract to a franchise and are obliged to move with it.
This relationship between a franchise and a division is called a team. We use the
word team synonymously with franchise. Consequently, we can view a franchise as
consisting of a collection of players, coaches, and a general manager. Players are
required to play for a given franchise for the entire season.

First we present the entity relationship diagram. We convert the E-R diagram to
relational, network, and hierarchical models in Sections 2.6,2.7, and 2.8.

Chapter 2 Data Models

Figure 2.33

A tabular representation of relations.

EMPLOYEE POSITION

Empl_No Name Skill Posting_No Skill
123450 Ron waiter 321 waiter
123457 Jon bartender 322 bartender
123458 Don busboy 323 busboy
123459 Pan hostess 324 hostess
123460 Pat bellboy 325 maitre d’
123461 Ian waiter 326 waiter

been partitioned into the various relations. While it is possible to infer access paths
from the relational model, as we will see later, the relational approach does require
the user to provide logical navigation through the database for the query.

The relation is the only data structure used in the relational data model to rep-
resent both entities and the relationships between them. A relation may be visualized
as a named table. Figure 2.33 shows the two relations EMPLOYEE and POSITION
using a tabular structure. Each column of the table corresponds to an awribute of the
relation and is named.

Rows of the relation are referred to as tuples of the relation ana the columns
are its attributes. Each attribute of a relation has a distinct name. The values tor an
attribute or a column are drawn from a set of values known as a domain, The domain
of an attribute contains the set of values that the attribute may assume. In the rela-
tional model, note that no two rows of a relation are identical and the ordering of the
rows is mot significant.

A refation represented by a table having n columns, defined on the domains D;,
D, . . ., Dy is a subset of the cartesian product D, X D, X . . . D,.

A relationship is represented, as in the E-R model, by combining the primary
keys of the entities involved in a relation and its attributes, if any.

A correspondence between two relations is implied by the data values of attri-
butes in the relation defined on common domains. Such correspondence is used in
navigating through the relational database. In the example in Figure 2.33 both the
EMPLOYEE and POSITION relations contain the identically named attribute' Skill
defined on a common domain. Consequently we can join these two relations to form
the relation, POSITION_ELIGIBILITY (Figure 2.34) using the common values of
the attribute Skill. Joining the two relations involves taking two rows, one from each
table, such that the value of Skill in the two rows is identical, and then concatenating
these rows. Note that in Figure 2.34 the first attribute Skill is from the EMPLOYEE
relation-and the second is from the POSITION relation. Qualifying these attributes
in POSITION_ELIGIBILITY by their respective relation names would allow us to
more strictly adhere to the relational model where names of attributes in the same

relation are distinct.

'The names of these attributes are identical in this instance to remind us that they have a common domain.

2.6 Relational Data Model 61

Figure 2.34 The relation obtained after joining the two relations of Figure 2.33

POSITION_ELIGIBILITY

EMPLOYEE. POSITION.

Empl_No Name Skill Posting_No Skill
123456 Ron waiter 321 waiter
123456 Ron waiter 326 waiter
123457 Jon bartender 322 bartender
123458 Don busboy 323 busboy
123459 Pam hostess 324 hostess
123461 lan waiter 321 waiter

| 123461 Ian waiter 326 waiter

Relational Model for the UHL

Using the relational model, each of the entities in the UHL can be represented by a
relation. The description of the relation is given by a relation scheme. A relation
scheme is like a type declaration in a programming language. It indicates the attri-
butes included in the scheme, their order, and their domain. However, we will ignore
the domain for the present.

Each relation scheme is named and we indicate this name by boldface capital
letters. We have a relation scheme for each of the PLAYER, FRANCHISE, and
DIVISION relations. These relation schemes are similar to the corresponding entities
in the E-R model:

PLAYER (Name, Birth_Place, Birth_Date)
FRANCHISE (Franchise_Name, Year_Established)
DIVISION (Division._Name)

Relationships between entities are also represented by relations.

The relationship GOAL is represented by a relation whose scheme includes the
primary keys Name and Franchise_Name, respectively, of the entities PLAYER and
FRANCHISE. In addition, it contains the attributes corresponding to those of the
relationship, namely Year, Goals_Against_Avg, and Shutouts. Therefore, the relation
scheme for GOAL is:

GOAL(Name, Franchise_Name, Year, Goals_Against_Avg, Shutouts)

FORWARD is also represented by a relation scheme with attributes that consist
of the same primary keys Name and Franchise_Name. It contains, as well the attri-
butes Year, Goals and Assists. Accordingly, the relation scheme for FORWARD is:

FORWARD (Name, Franchise_Name, Year, goals, Assists)

TEAM is represented by a relation scheme with attributes consisting of the pri-
mary keys Franchise_Name and Division_Name, respectively, of the entities FRAN-
CHISE and DIVISION. It also-contains the attributes corresponding to those of the
relationship, namely Year, City, and Points. The relation scheme for TEAM is:

TEAM (Franchise_Name, Division_Name, Year, City, Points)

62 Chapter 2 Data Models

Figure 2.38 Parts of relations from the UHL relation database.

PLAYER
Name Birth_Place Birth_Date
Zax Viviteer Prague, Czec 1962-04-29
Barn Kurri Detroit, Mich 1964-07-17
Todd Smith Roseau, Minn 1963-05-09
Dave Fisher Edmonton, Canada 1959-10-28
Ozzy Xavier Kiruna, Sweden 1965-02-19
Gaston Vabr Montreal, Canada 1958-05-12
Ken Dorky Chicago, Ill 1958-05-13
Brian Lafontaine Paris, France 1960-07-03
Bruce McTavish Rio, Brazil - 1966-10-27
Dave O’Connell Dublin, Ireland 1967-03-16
Johnny Brent Boston, Mass ’ 1964-12-23
FRANCHISE DIVISION
Franchise_Name Year_Established Division_Name
Bullets 1975 Northern
Rodeos - 1921 Southern
Zippers 1917 European
Blades 1982 World
Flashers 1967
FORWARD
Name Franchise_Name Year Goals Assists
Bamn Kurri Bu‘l{:ts 1986 | 40 67
Bruce McTavish Bullets 1986 30 37
Todd Smith Rodeos 1986 17 24
Ozzy Xavier Blades 1986 56 119
" Ozzy Xavier Flashers 1985 36 49
; Gaston Vabr Flashers 1986 16 22
“'| Zax Viviteer Blades 1986 80 162
Dave O’Connell Zippers 1986 12 59
Brian Lafontaine |- Zippers 1985 10 40
Brian Lafontaine Zippers 1986 22 73

Sample tuples from these relations, which have the same names as the corre-
sponding schemes, are shown in the tables of Figure 2.35.
We return (o in-depth discussions of the relational data model in Chapter 4.

2.7 Network Data Model 63

2.7

Figure 2.385 Continued
GOAL
Name Franchise_Name Year Goals_Against_Avg Shutouts
Ken Dorky Blades 1986 1.21 7
Dave Fisher Zippers 1986 4.02 4
Johnny Brent Flashers 1986 7.61 0
Dave Fisher Flashers 1985 3.05 5
TEAM
Franchise_Name Division_Name Year City Points
Flashers Northern 1986 St. Louis 93
Blades Northern 1986 Edmonton 97
Zippers European 1985 Paris 82
Zippers Northern 1986 Montreal 99
Rodeos Southern 1986 Rio 65
Bullets World 1986 Tokyo 79
R

Network Data Model

The network data model was formalized in the late 1960s by the Database Task
Group of the Conference on Data System Languages (DBTG/CODASYL). Their first
report {CODA 71), which has been revised a number of times, contained detailed
specifications for the network data model (a model conforming to these specifications
is also known as the DBTG data model). The specifications contained in the repﬁrt
and its subsequent revisions have been subjected to much debate and criticism. Many
of the current database applications have been built on commercial DBMS systems
using the DBTG model.

The DBTG model uses two different data structures to represent the database
entities and relationships between the entities, namely record type and set type. A
record type is used to represent an entity type. It is made up of a number of data
items that represent the attributes of the entity.

A set type is used to represent a directed relationship between two record types.
the so-called owner record type, and the member record type. The set type, lik .
the record type, is named and specifies that there is a one-to-many relationship (1:M)
between the owner and member record types. The set type can have more than one
record type as its member, but only one record type is allowed to be the owner in a
given set type. A database could have one or more occurrences of each of its record
and set types. An occurrence of a set type consists of an occurrence of the owner
record type and any number of occurrences of each of its member record typese A
record type cannot be a member of two distinct occurrences of the same set type.

Chapter 2 Data Models

the member recora type or each of these symmetrical sets. Corresponding to the
relationship GOAL, we create the logical record type GOAL, and the sets Fr_G and
P_G. The record types FRANCHISE and PLAYER are owners and the record type
GOAL is the common member in these sets.

The data structure diagram for the database for the UHL is shown in Figure
2.38. The sets included are:

® P_(G and Fr_G, corresponding to the many-to-many relationship GOAL between
the entitics PLAYERS and FRANCHISE. GOAL is the common member record
type, the owner record types being PLAYER (of the set P_G) and FRANCHISE
(of the set Fr_G). The attributes of the relationship are the fields of the record
type GOAL.

® P_F and Fr_F, corresponding to the many-to-many relationship FORWARD
between the entitics PLAYERS and FRANCHISE. The member record type
is FORWARD, with PLAYER (of the set P_F) and FRANCHISE (of the set
Fr_#) being the owner record types. The fields of the common member record
type FORWARD are the attributes of the relationship.

® Fr_T and D_T, corresponding to the many-to-many relationship TEAM between
the entitics FRANCHISE and DIVISION. TEAM is the member record type;
the owner record types are FRANCHISE (of the set Fr_T) and DIVISION (of
the set D_T). The attributes of the relationship are the fields of the record type
TEAM, the common member of Fr_T and D_T.

Figure 2.39 featurcs a sample of the data contained in some of these logical
record types and some of the sets in which these records are involved as member or
owner. The common records, which are shaded, are the links in establishing a many-
to-many relationship. The connecting lines between two records indicate the exis-

Network model for the UHL database.

PLAYER

FRANCHISE DIVISION

|

—P_F—p v mm e Fr__FJ |~Fr_T-> TEAM l«—D_T }

T 1 T]

I |
G) G | D)) ()

L_pG—>»{ GOAL l«—Fr G —

] L
Goals
(st)

2.8 Hierarchical Model L 7

Figure 2.39

¥ ~wu

Part of the data in the network database of the UHL.

2.8

[| Brien Lafontaine | Pasis,France | 19600703 ¥

PLAYER
’—{ Gaston Vabr IMonneal.Camdal 195805/12 |

FORWARD

1985] 10] 40] 3 198622 | 73] (1986 1 16| 22|

» FRANCHISE
= L R

ﬁ

European DIVISION

tence of an owner/member relationship between the record occurrences and some
mechanism to go from one to the other. For instance, the occurrence (Brian Lafon-
taine, Paris, France, 1960-07-03) of the logical record type PLAYER is the awner
in the set occurrence P_F. The members of this set occurrence owned by him are
the FORWARD logical record occurrences (1985, 10, 40) and (1986, 22, 73). These
are also owned by the franchise Zippers and establish the relationship between the
player and the franchise.
We return to detailed discussions of the network modél in Chapter 8

Hierarchical Model

A tree may be defined as a set of nodes such that there is one specially designated
node called the root (node) and the remaining nodes are partitioned into disjoint sets,
each of which in turn is a tree, the subtrees of the root. If the relative order of the
subtrees is significant, the tree is an ordered tree. _)

Like an organization chart or a family tree, a hierarchy is an ordered tree and 1s
easy to understand. At the root of the tree is the single parent; the parent can have
none, one, or more children. (Note that in comparing the hierarchical tree with a
family tree, we are ignoring one of the parents; in other words, both the parents are
represented implicitly by the single parent.)

70 Chapter 2 Data Models

Figure 2.41 Part ot the data in the hierarchical database of the UHL.

Fbrs 1957 |— | [z 7]

Blades 1982
des I
Lwas Paris 827
l Zippers 1917 l
~ | 1986 St Louis 93 1986 Edmonton 97 1986 Monreal 99 |

.. | Gasion Vabr Ozzy Xavier

%1 Mofireal, Canada Kiruna, Sweden
| 19580512 1965-02-19

I Zax Viviteer

o - Lm - : [56 w9 | - Prague, Czech

1962-04-29

KenDorky

Chicago, HI -
80 162 - 1958-05-13 - -

121 7

of the entity is represented by a record occurrence. A weak entity can be represented
as a separate record type. In this case, the identifying relationship is represented as
a set type wherein the record type corresponding to the weak entity type forms the
member and the record type corresponding to the strong entity is the owner. A 1:1
or 1:N relationship is represented as a set type. An M:N relationship requires intro-
ducing an intermediate vecord type. This record type is a common member in two
set types, one of which is owned by each of the record types involved in the M:N
relationship.

Converting an E-R diagram to a hierarchical model can be accomplished as
follows. Each entity type in the E-R diagram is represented by a record type. A 1:N
relationship is represented as a hierarchy type where the record type corresponding
to the one side of the relationship is the parent (a 1:1 relationship is a special case
of the 1:N relationship). A weak entity can be represented as a separate record type.
This record type becomes a dependent in a hierarchy where the record type, corre-
sponding to the strong entity in the identifying relationship, is the parent. An M:N
relationship requires introducing duplicate record types or using multiple hierarchies
and introducing virtual records.

2.9 A Comparison 71

In the network model, it is possible that several identical occurrences of the
same logical record type could exist. These multiple identical occurrences are distin-
guished by their membership in different occurrences of the sets. Similarly, in the
hierarchical model, identical occurrences of a record type are distinguished by their
associations with different ancestor record type occurrences. The tuples of a relation
are, however, unique because if the relation represents a relationship between enti-
ties, the relationships between occurrences of the entities are explicitly recorded in
the tuples by inclusion of the corresponding primary keys.

The relational model allows for a fairly straightforward method of selecting
certain entities or relationships. This is done by selecting those tuples of the relation
corresponding to the entity or relationship that meet certain selection conditions. For
instance, all franchises for which the player Ozzy Xavier played could be derived by
choosing tuples from the relation FORWARD (Figure 2.35) with Name = Ozzy
Xavier. Similarly, all players who scored more than 50 goals in 1986 could be se-
lected from the FORWARD relation. Likewise, finding all cities in which Ozzy Xav-/~
ier played can be done by first selecting the tuples from FORWARD with the valféc
of Name = Ozzy Xavier. These selected tuples are then joined (concatenated) withs
those in the table TEAM such that the values of Franchise_Name and Year in btk
is the same.

FAANGALORE
575 001.

of the relational model is handled differently. This involves following the owner-to-~\
member or the member-to-owner pointers. Therefore, in order to identify all fran-
chises for which Ozzy Xavier played, we would first find the record for Ozzy Xavier
in the player record type. We would then follow the pointers in the set P_F to
the occuirences of the member record type FORWARD for his score, and last,
follow the pointers to the owner of each such occurrence in the set Fr_F to find the
FRANCHISE. Since the player Ozzy Xavier is not a goalie, the set P_G for the
occurrence of his record in record type PLAYER would be empty. Consequently,
following the set P_G and then the owner in the set Fr_G for this player would not
be possible.

Selection operations for the record type corresponding to the root of a hierarchi-
cal tree are similar to operations for its counterpart in the relational and network
models. As in the case of the network model, we have to traverse pointers from
parent to child since there is no method of traveling from descendant to parent.
However, a virtual scheme using a virtual record concept (to be discussed in chapter
9) introduces tHis reverse-navigation facility.

The process of joining relations in the case of the relational model or following
the pointers from owner to member, from member to owner, or from parent to child
is known as navigating through the datzbase. Navigation through relations that rep-
resent an M:N relationship is just as simple as through a 1:M relationship. This
leads us to conclude that it is easier to specify how to manipulate a relational data-
base than a network or hierarchical one. This in turn leads to a query language for
the relational model that is correct, clear, and effective in specifying the required
operations. Unfortunately, the join operation is inherently inefficient and demands a
considerable amount of processing and retrieval of unnecessary data. The structure
for the network and hierarchical models can be implemented efficiently. Such an
implementation would mean that navigating through these databases, though awk-
ward, requires the retrieval of relatively little unnecessary data.

72

Chapter 2 Data Models

Summary

In this chapter we previewed the major data modeling concepts and the data models
used in current DBMSs. The E-R model is used increasingly as a tool for database
applications modeling.

A number of data representation models have been developed over the years.
As in the case of programming languages, one concludes that there is no one ‘‘best’’
choice for all applications. These models differ in their method of representing the
associations between entities and attributes.

Traditional data models are hierarchical, network, or relational models. The hi-
erarchical model evolved from the file-based system; the network model is a superset
of the hierarchical model. The relational data model is based on the mathematical
relational concept. The data model concept evolved at about the same time as the
relational data model.

The entity-relationship data model, which is popular for high-level database de-
sign, provides a means of representing relationships between entities. The entity re-
lationship data model was developed using commercially available DBMSs to model
application databases.

The DBTG proposal was the first data model to be formalized in the late 1960s.
Many current database applications have been built on commercial DBMSs using this
approach.

data model entity-relationship (E-R) data tuple

association model attribute

attribute association entity-relationship (E-R) domain

relationship diagram relation scheme
functional dependency fﬂmng e_ntlty .) record type
determinant 1dent1fym_g relationship set type

candidate key weak entity owner record type
primary key discriminator member record type
binary relationship mlatlonshq? set) logical record
repeating group N-ary !elatu?nshxg forest

file-based model ternary relationship spanning trees
hierarchical model abstraction slecting

network model generalization intermediate record type
relational data model specialization navigating

semantic data model aggregation

Exercises

2.1 Define the following terms:

(a) association
(b) relationship

